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Client/Mentor
● Dr. James Palmer 

○ Associate Professor at NAU - SICCS

● Dr. John Georgas
○ Associate Professor at NAU - SICCS

● Nakai McAddis
○ Lecturer at NAU
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Problem 
Statement
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The Problem
● Large companies with large projects

○ Culturally diverse developers
○ Language barrier

● Software and Documentation
○ Misunderstood documentation
○ Comments tightly coupled 

with the codebase
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The Solution: CrossDoc
● Comments stored in external locations 

○ Easily accessible for all users
○ Editable in code or in comment store

● Scales alongside teams
○ Expands independently from code

● Breaks down cultural barriers
○ Easily store and reference

comments in different 
languages
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Problem Visualized
● Documentation is buried and

too reliant on the codebase

● Jumbled comments with
excess information
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Solution Visualized

● Provide a better way to 
comment with CrossDoc!

● Scalable, external storage, 
and enhanced comment 
functionalities.
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CrossDoc Key 
Requirements

● Simple setup process

● External comment storage

● Intuitive comment editing

● Functional text-editor plugins 
○ Atom
○ Emacs
○ Sublime
○ Vim



Architecture and 
Implementation
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High Level Overview
● MVC Architecture

○ Model: CrossDoc Repository
○ View: Text Editor Plugin Content
○ Controller: Command Line Program

● Frameworks/Tools
○ Python setuptools
○ Text editor APIs
○ MediaWiki API
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Command Line Program
● Provides API to interact with tool
● Text editor agnostic
● Implements core functionality

○ Create comments
○ Read comments
○ Delete comments
○ Etc..
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Command Line Program
● Parser

○ Reads input
○ Delegates to commands

● Commands
○ Implements CrossDoc functionality

● Logger
○ Provides concise output
○ Outputs help text where necessary
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Text Editor Plugins
● CrossDoc user interface
● Intuitive commands and hotkeys
● Support for multiple text editors

○ Atom
○ Emacs
○ Sublime
○ Vim
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CrossDoc Repository
● Identified by a custom config 

file (cdoc-config.json)

● Stores references to 
comment stores

● Persistent meta-
data storage
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Prototype
Review
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External Comment Storage
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Text Editor Plugins
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Atom

Sublime Vim

Emacs



Comment Categories
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ctrl + c + nctrl + c + n

ctrl + c + n



Development
Challenges
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Development Challenges
● Managing multiple storage platforms

○ Remote and local storage
○ Internal platform validation

● Decoupling comments from version control
○ Removing redundancy from commits
○ Encapsulation of comment text
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Development Solutions
● Managing multiple storage platforms

○ Implementation of Wiki storage
○ Seamless integration with command line tool

● Decoupling comments from version control
○ Git Hooks (pre and post commit)
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Testing Plan
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System Tests
Testing of the CrossDoc platform will leverage the use of Python’s “unittest” 
library

● Unit Testing
○ Rigorous testing of CrossDoc command systems with all feasible inputs
○ 124 Equivalence Partitions
○ Function Coverage: 95%
○ Branch Coverage: 100%

● Integration Testing
○ Ensure functionality of the Text Editor Plugins to Command Line Program Chain
○ Atom, Emacs, Sublime, and Vim will utilize testing classes in the CL Program 23



Usability Tests
Testing the CrossDoc application with its two main user groups

● Software Developers
○ Main goal: Devs find it easy to create, push, and pull comments into the repository
○ Should also feel like normal commenting with our extended systems

● Technical Writers
○ Main goal: Non-programmers able to modify comment-base from Wiki location
○ Testing the functionality of Remote Stores and Ease of Use for writers
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Development 
Schedule
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Gantt Chart



Development 
Milestones

Previously Completed (DR2):

● Command-Line Program
● Text-Editor Plugins

Newly Completed (DR3):

● Testing Plan
● Developed Wiki extension for 

Remote Stores
● Began Foundation of Git-Hook 

pre and post commit systems
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Summary
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Problem & Solution Summary

Without CrossDoc With CrossDoc



In Conclusion
● Prototypes

○ Text Editor Plugins: Atom, Emacs, Sublime, Vim
○ Comment Categories within Editors
○ Remote Stores integration through Wiki

● Testing Plan
○ Unit Testing of CrossDoc core commands
○ Integration Testing of Chain between TE Plugins and CrossDoc
○ Usability Testing with Software Developers and Technical Writers

● Our Path Ahead
○ Finalize Git Hooks implementation
○ Write and execute tests according to Testing Plan
○ Creation of Easy to Use Documentation for End-Users
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Questions/Comments


