
CrossDoc
Team: Octo-Docs

Team Members:
Garrison Smith
Peter Huettl
Kristopher Moore
Brian Saganey



Client/Mentor
● Dr. James Palmer 

○ Associate Professor at NAU - SICCS

● Dr. John Georgas
○ Associate Professor at NAU - SICCS

● Nakai McAddis
○ Lecturer at NAU

2



Problem 
Statement

3



The Problem
● Large companies with large projects

○ Culturally diverse developers
○ Language barrier

● Software and Documentation
○ Misunderstood documentation
○ Comments tightly coupled 

with the codebase

4



The Solution: CrossDoc
● Comments stored in external locations 

○ Easily accessible for all users
○ Editable in code or in comment store

● Scales alongside teams
○ Expands independently from code

● Breaks down cultural barriers
○ Easily store and reference

comments in different 
languages

5



Problem Visualized
● Documentation is buried and

too reliant on the codebase

● Jumbled comments with
excess information

6



Solution Visualized

● Provide a better way to 
comment with CrossDoc!

● Scalable, external storage, 
and enhanced comment 
functionalities.

7



8

CrossDoc Key 
Requirements

● Simple setup process

● External comment storage

● Intuitive comment editing

● Functional text-editor plugins 
○ Atom
○ Emacs
○ Sublime
○ Vim



Architecture and 
Implementation

9



High Level Overview
● MVC Architecture

○ Model: CrossDoc Repository
○ View: Text Editor Plugin Content
○ Controller: Command Line Program

● Frameworks/Tools
○ Python setuptools
○ Text editor APIs
○ MediaWiki API

10



Command Line Program
● Provides API to interact with tool
● Text editor agnostic
● Implements core functionality

○ Create comments
○ Read comments
○ Delete comments
○ Etc..

11



Command Line Program
● Parser

○ Reads input
○ Delegates to commands

● Commands
○ Implements CrossDoc functionality

● Logger
○ Provides concise output
○ Outputs help text where necessary

12



Text Editor Plugins
● CrossDoc user interface
● Intuitive commands and hotkeys
● Support for multiple text editors

○ Atom
○ Emacs
○ Sublime
○ Vim

13



CrossDoc Repository
● Identified by a custom config 

file (cdoc-config.json)

● Stores references to 
comment stores

● Persistent meta-
data storage

14



Prototype
Review

15



External Comment Storage

16



Text Editor Plugins

17

Atom

Sublime Vim

Emacs



Comment Categories

18

ctrl + c + nctrl + c + n

ctrl + c + n



Development
Challenges

19



Development Challenges
● Managing multiple storage platforms

○ Remote and local storage
○ Internal platform validation

● Decoupling comments from version control
○ Removing redundancy from commits
○ Encapsulation of comment text

20



Development Solutions
● Managing multiple storage platforms

○ Implementation of Wiki storage
○ Seamless integration with command line tool

● Decoupling comments from version control
○ Git Hooks (pre and post commit)

21



Testing Plan

22



System Tests
Testing of the CrossDoc platform will leverage the use of Python’s “unittest” 
library

● Unit Testing
○ Rigorous testing of CrossDoc command systems with all feasible inputs
○ 124 Equivalence Partitions
○ Function Coverage: 95%
○ Branch Coverage: 100%

● Integration Testing
○ Ensure functionality of the Text Editor Plugins to Command Line Program Chain
○ Atom, Emacs, Sublime, and Vim will utilize testing classes in the CL Program 23



Usability Tests
Testing the CrossDoc application with its two main user groups

● Software Developers
○ Main goal: Devs find it easy to create, push, and pull comments into the repository
○ Should also feel like normal commenting with our extended systems

● Technical Writers
○ Main goal: Non-programmers able to modify comment-base from Wiki location
○ Testing the functionality of Remote Stores and Ease of Use for writers

24



Development 
Schedule

25



26

Gantt Chart



Development 
Milestones

Previously Completed (DR2):

● Command-Line Program
● Text-Editor Plugins

Newly Completed (DR3):

● Testing Plan
● Developed Wiki extension for 

Remote Stores
● Began Foundation of Git-Hook 

pre and post commit systems

27



Summary

28



29

Problem & Solution Summary

Without CrossDoc With CrossDoc



In Conclusion
● Prototypes

○ Text Editor Plugins: Atom, Emacs, Sublime, Vim
○ Comment Categories within Editors
○ Remote Stores integration through Wiki

● Testing Plan
○ Unit Testing of CrossDoc core commands
○ Integration Testing of Chain between TE Plugins and CrossDoc
○ Usability Testing with Software Developers and Technical Writers

● Our Path Ahead
○ Finalize Git Hooks implementation
○ Write and execute tests according to Testing Plan
○ Creation of Easy to Use Documentation for End-Users

30



Questions/Comments


